Displaying 81 – 100 of 171

Showing per page

Ojective ideals in modular lattices

Shriram K. Nimbhorkar, Rupal C. Shroff (2015)

Czechoslovak Mathematical Journal

The concept of an extending ideal in a modular lattice is introduced. A translation of module-theoretical concept of ojectivity (i.e. generalized relative injectivity) in the context of the lattice of ideals of a modular lattice is introduced. In a modular lattice satisfying a certain condition, a characterization is given for direct summands of an extending ideal to be mutually ojective. We define exchangeable decomposition and internal exchange property of an ideal in a modular lattice. It is...

On a weak Freudenthal spectral theorem

Marek Wójtowicz (1992)

Commentationes Mathematicae Universitatis Carolinae

Let X be an Archimedean Riesz space and 𝒫 ( X ) its Boolean algebra of all band projections, and put 𝒫 e = { P e : P 𝒫 ( X ) } and e = { x X : x ( e - x ) = 0 } , e X + . X is said to have Weak Freudenthal Property ( WFP ) provided that for every e X + the lattice l i n 𝒫 e is order dense in the principal band e d d . This notion is compared with strong and weak forms of Freudenthal spectral theorem in Archimedean Riesz spaces, studied by Veksler and Lavrič, respectively. WFP is equivalent to X + -denseness of 𝒫 e in e for every e X + , and every Riesz space with sufficiently many projections...

On finitely generated multiplication modules

R. Nekooei (2005)

Czechoslovak Mathematical Journal

We shall prove that if M is a finitely generated multiplication module and A n n ( M ) is a finitely generated ideal of R , then there exists a distributive lattice M ¯ such that S p e c ( M ) with Zariski topology is homeomorphic to S p e c ( M ¯ ) to Stone topology. Finally we shall give a characterization of finitely generated multiplication R -modules M such that A n n ( M ) is a finitely generated ideal of R .

On ideals of a skew lattice

João Pita Costa (2012)

Discussiones Mathematicae - General Algebra and Applications

Ideals are one of the main topics of interest when it comes to the study of the order structure of an algebra. Due to their nice properties, ideals have an important role both in lattice theory and semigroup theory. Two natural concepts of ideal can be derived, respectively, from the two concepts of order that arise in the context of skew lattices. The correspondence between the ideals of a skew lattice, derived from the preorder, and the ideals of its respective lattice image is clear. Though,...

Currently displaying 81 – 100 of 171