A characterization of distributive lattices by tolerance lattices
Uninorms on bounded lattices have been recently a remarkable field of inquiry. In the present study, we introduce two novel construction approaches for uninorms on bounded lattices with a neutral element, where some necessary and sufficient conditions are required. These constructions exploit a t-norm and a closure operator, or a t-conorm and an interior operator on a bounded lattice. Some illustrative examples are also included to help comprehend the newly added classes of uninorms.
In this paper, on a bounded lattice , we give a new approach to construct uninorms via a given uninorm on the subinterval (or ) of under additional constraint conditions on and . This approach makes our methods generalize some known construction methods for uninorms in the literature. Meanwhile, some illustrative examples for the construction of uninorms on bounded lattices are provided.
Let denote the variety of lattices generated by convex sublattices of lattices in . For any proper variety , the variety is proper. There are uncountably many varieties with .
In [4] Blok and Pigozzi prove syntactically that RM, the propositional calculus also called R-Mingle, is algebraizable, and as a consequence there is a unique quasivariety (the so-called equivalent quasivariety semantics) associated to it. In [3] it is stated that this quasivariety is the variety of Sugihara algebras. Starting from this fact, in this paper we present an equational base for this variety obtained as a subvariety of the variety of R-algebras, found in [7] to be associated in the same...
A variety 𝕍 of algebras of a finite type is almost ff-universal if there is a finiteness-preserving faithful functor F: 𝔾 → 𝕍 from the category 𝔾 of all graphs and their compatible maps such that Fγ is nonconstant for every γ and every nonconstant homomorphism h: FG → FG' has the form h = Fγ for some γ: G → G'. A variety 𝕍 is Q-universal if its lattice of subquasivarieties has the lattice of subquasivarieties of any quasivariety of algebras of a finite type as the quotient of its sublattice....