On convexities of lattices
We consider the problem of constructing dense lattices in with a given non trivial automorphisms group. We exhibit a family of such lattices of density at least , which matches, up to a multiplicative constant, the best known density of a lattice packing. For an infinite sequence of dimensions , we exhibit a finite set of lattices that come with an automorphisms group of size , and a constant proportion of which achieves the aforementioned lower bound on the largest packing density. The algorithmic...
In this paper, the structures of collection of pronormal subgroups of dicyclic, symmetric and alternating groups are studied in respect of formation of lattices and sublattices of . It is proved that the collections of all pronormal subgroups of and S do not form sublattices of respective and , whereas the collection of all pronormal subgroups of a dicyclic group is a sublattice of . Furthermore, it is shown that and ) are lower semimodular lattices.
The variety of lattices generated by lattices of all convex sublattices of distributive lattices is investigated.