On a characterization of the lattice of -ideals of an ordered set
Page 1 Next
Jiří Rosický (1972)
Archivum Mathematicum
M. Janowitz (1973)
Fundamenta Mathematicae
Hilda Draškovičová (1974)
Matematický časopis
Blanka Kutinová, Teo Sturm (1979)
Czechoslovak Mathematical Journal
Jiří Rachůnek (1984)
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
Xiangdong Chen (1992)
Commentationes Mathematicae Universitatis Carolinae
The structure of binary coproducts in the category of frames is analyzed, and the results are then applied widely in the study of compactness, local compactness (continuous frames), separatedness, pushouts and closed frame homomorphisms.
Vítězslav Novák, Miroslav Novotný (1987)
Czechoslovak Mathematical Journal
W.D. Burgess, R. Raphael (1978)
Semigroup forum
Otto Bernard (2003)
Acta Universitatis Carolinae. Mathematica et Physica
Peter Volauf (1980)
Mathematica Slovaca
Dacić, Rade M. (1983)
Publications de l'Institut Mathématique. Nouvelle Série
Iqbalunnisa (1971)
Fundamenta Mathematicae
Jana Ryšlinková (1978)
Commentationes Mathematicae Universitatis Carolinae
Gabriele H. Greco (1988)
Colloquium Mathematicae
Josef Dalík (1982)
Archivum Mathematicum
William H. Cornish (1977)
Mathematica Slovaca
Lowig, H.F.J. (1978)
Portugaliae mathematica
Štefan Černák (1983)
Mathematica Slovaca
Danica Jakubíková-Studenovská (1989)
Czechoslovak Mathematical Journal
Shrawani Mitkari, Vilas Kharat (2024)
Mathematica Bohemica
In this paper, the structures of collection of pronormal subgroups of dicyclic, symmetric and alternating groups are studied in respect of formation of lattices and sublattices of . It is proved that the collections of all pronormal subgroups of and S do not form sublattices of respective and , whereas the collection of all pronormal subgroups of a dicyclic group is a sublattice of . Furthermore, it is shown that and ) are lower semimodular lattices.
Page 1 Next