On -lattices
We begin a systematic study of the category GTS of generalized topological spaces (in the sense of H. Delfs and M. Knebusch) and their strictly continuous mappings. We reformulate the axioms. Generalized topology is found to be connected with the concept of a bornological universe. Both GTS and its full subcategory SS of small spaces are topological categories. The second part of this paper will also appear in this journal.
This is the second part of A. Piękosz [Ann. Polon. Math. 107 (2013), 217-241]. The categories GTS(M), with M a non-empty set, are shown to be topological. Several related categories are proved to be finitely complete. Locally small and nice weakly small spaces can be described using certain sublattices of power sets. Some important elements of the theory of locally definable and weakly definable spaces are reconstructed in a wide context of structures with topologies.
In this paper, we define and characterize the notions of (implicative, maximal, prime) ideals in hoops. Then we investigate the relation between them and prove that every maximal implicative ideal of a -hoop with double negation property is a prime one. Also, we define a congruence relation on hoops by ideals and study the quotient that is made by it. This notion helps us to show that an ideal is maximal if and only if the quotient hoop is a simple MV-algebra. Also, we investigate the relationship...
Ideals are one of the main topics of interest when it comes to the study of the order structure of an algebra. Due to their nice properties, ideals have an important role both in lattice theory and semigroup theory. Two natural concepts of ideal can be derived, respectively, from the two concepts of order that arise in the context of skew lattices. The correspondence between the ideals of a skew lattice, derived from the preorder, and the ideals of its respective lattice image is clear. Though,...
A proof of Jonsson's theorem inspired by considering a natural topology on algebraic lattices is given.
In recent papers, S. N. Begum and A. S. A. Noor have studied join partial semilattices (JP-semilattices) defined as meet semilattices with an additional partial operation (join) satisfying certain axioms. We show why their axiom system is too weak to be a satisfactory basis for the authors' constructions and proofs, and suggest an additional axiom for these algebras. We also briefly compare axioms of JP-semilattices with those of nearlattices, another kind of meet semilattices with a partial join...