Semi lattices whose structure lattice is distributive.
For lattices of finite length there are many characterizations of semimodularity (see, for instance, Grätzer [3] and Stern [6]–[8]). The present paper deals with some conditions characterizing semimodularity in lower continuous strongly dually atomic lattices. We give here a generalization of results of paper [7].
We investigate the congruence lattices of lattices in the varieties . Our approach is to represent congruences by open sets of suitable topological spaces. We introduce some special separation properties and show that for different n the lattices in have different congruence lattices.
In this paper we investigate the system Conv of all sequential convergences on a distributive lattice .
The notion of sequential convergence on a lattice is defined in a natural way. In the present paper we investigate the system of all sequential convergences on a lattice .
This paper gives some new characterizations of completeness for trellises by introducing the notion of a cycle-complete trellis. One of our results yields, in particular, a characterization of completeness for trellises of finite length due to K. Gladstien (see K. Gladstien: Characterization of completeness for trellises of finite length, Algebra Universalis 3 (1973), 341–344).