General comparability of pseudo MV-algebras
We deal with unbounded dually residuated lattices that generalize pseudo -algebras in such a way that every principal order-ideal is a pseudo -algebra. We describe the connections of these generalized pseudo -algebras to generalized pseudo effect algebras, which allows us to represent every generalized pseudo -algebra by means of the positive cone of a suitable -group . We prove that the lattice of all (normal) ideals of and the lattice of all (normal) convex -subgroups of are isomorphic....
We study unbounded versions of effect algebras. We show a necessary and sufficient condition, when lattice operations of a such generalized effect algebra are inherited under its embeding as a proper ideal with a special property and closed under the effect sum into an effect algebra. Further we introduce conditions for a generalized homogeneous, prelattice or MV-effect effect algebras. We prove that every prelattice generalized effect algebra is a union of generalized MV-effect algebras and...
MV-algebras can be treated as non-commutative generalizations of boolean algebras. The probability theory of MV-algebras was developed as a generalization of the boolean algebraic probability theory. For both theories the notions of state and observable were introduced by abstracting the properties of the Kolmogorov's probability measure and the classical random variable. Similarly, as in the case of the classical Kolmogorov's probability, the notion of independence is considered. In the framework...