Page 1

Displaying 1 – 6 of 6

Showing per page

Embeddings of totally ordered MV-algebras of bounded cardinality

Piotr J. Wojciechowski (2009)

Fundamenta Mathematicae

For a given cardinal number 𝔞, we construct a totally ordered MV-algebra M(𝔞) having the property that every totally ordered MV-algebra of cardinality at most 𝔞 embeds into M(𝔞). In case 𝔞 = ℵ₀, the algebra M(𝔞) is the first known MV-algebra with respect to which the deductive system for the infinitely-valued Łukasiewicz's propositional logic is strongly complete.

Entropy on effect algebras with the Riesz decomposition property I: Basic properties

Antonio Di Nola, Anatolij Dvurečenskij, Marek Hyčko, Corrado Manara (2005)

Kybernetika

We define the entropy, lower and upper entropy, and the conditional entropy of a dynamical system consisting of an effect algebra with the Riesz decomposition property, a state, and a transformation. Such effect algebras allow many refinements of two partitions. We present the basic properties of these entropies and these notions are illustrated by many examples. Entropy on MV-algebras is postponed to Part II.

Epimorphisms between finite MV-algebras

Aldo V. Figallo, Marina B. Lattanzi (2017)

Mathematica Bohemica

MV-algebras were introduced by Chang to prove the completeness of the infinite-valued Łukasiewicz propositional calculus. Recently, algebraic theory of MV-algebras has been intensively studied. Wajsberg algebras are just a reformulation of Chang MV-algebras where implication is used instead of disjunction. Using these equivalence, in this paper we provide conditions for the existence of an epimorphism between two finite MV-algebras A and B . Specifically, we define the mv-functions with domain in...

Extensional subobjects in categories of Ω -fuzzy sets

Jiří Močkoř (2007)

Czechoslovak Mathematical Journal

Two categories 𝕊𝕖𝕥 ( Ω ) and 𝕊𝕖𝕥𝔽 ( Ω ) of fuzzy sets over an M V -algebra Ω are investigated. Full subcategories of these categories are introduced consisting of objects ( s u b ( A , δ ) , σ ) , where s u b ( A , δ ) is a subset of all extensional subobjects of an object ( A , δ ) . It is proved that all these subcategories are quasi-reflective subcategories in the corresponding categories.

Currently displaying 1 – 6 of 6

Page 1