Displaying 1101 – 1120 of 1272

Showing per page

When is every order ideal a ring ideal?

Melvin Henriksen, Suzanne Larson, Frank A. Smith (1991)

Commentationes Mathematicae Universitatis Carolinae

A lattice-ordered ring is called an OIRI-ring if each of its order ideals is a ring ideal. Generalizing earlier work of Basly and Triki, OIRI-rings are characterized as those f -rings such that / 𝕀 is contained in an f -ring with an identity element that is a strong order unit for some nil l -ideal 𝕀 of . In particular, if P ( ) denotes the set of nilpotent elements of the f -ring , then is an OIRI-ring if and only if / P ( ) is contained in an f -ring with an identity element that is a strong order unit....

When Min ( G ) - 1 has a clopen π -base

Ramiro Lafuente-Rodriguez, Warren Wm. McGovern (2021)

Mathematica Bohemica

It is our aim to contribute to the flourishing collection of knowledge centered on the space of minimal prime subgroups of a given lattice-ordered group. Specifically, we are interested in the inverse topology. In general, this space is compact and T 1 , but need not be Hausdorff. In 2006, W. Wm. McGovern showed that this space is a boolean space (i.e. a compact zero-dimensional and Hausdorff space) if and only if the l -group in question is weakly complemented. A slightly weaker topological property...

Currently displaying 1101 – 1120 of 1272