A certain Galois connection and weak automorphisms
We present a groupoid which can be converted into a Boolean algebra with respect to term operations. Also conversely, every Boolean algebra can be reached in this way.
In [7] and [8], two sets of regular identities without finite proper models were introduced. In this paper we show that deleting one identity from any of these sets, we obtain a set of regular identities whose models include all affine spaces over GF(p) for prime numbers p ≥ 5. Moreover, we prove that this set characterizes affine spaces over GF(5) in the sense that each proper model of these regular identities has at least 13 ternary term functions and the number 13 is attained if and only if the...