Rectangular groupoids
Defining an (n+1)-ary superposition operation on the set of all n-ary terms of type τ, one obtains an algebra of type (n+1,0,...,0). The algebra n-clone τ is free in the variety of all Menger algebras ([9]). Using the operation there are different possibilities to define binary associative operations on the set and on the cartesian power . In this paper we study idempotent and regular elements as well as Green’s relations in semigroups of terms with these binary associative operations...
A non-empty set X of a carrier A of an algebra A is called Q-independent if the equality of two term functions f and g of the algebra A on any finite system of elements a₁,a₂,...,aₙ of X implies f(p(a₁),p(a₂),...,p(aₙ)) = g(p(a₁),p(a₂),...,p(aₙ)) for any mapping p ∈ Q. An algebra B is a retract of A if B is the image of a retraction (i.e. of an idempotent endomorphism of B). We investigate Q-independent subsets of algebras which have a retraction in their set of term functions.