TC semigroups and inflations.
Derived varieties were invented by P. Cohn in [4]. Derived varieties of a given type were invented by the authors in [10]. In the paper we deal with the derived variety of a given variety, by a fixed hypersubstitution σ. We introduce the notion of the dimension of a variety as the cardinality κ of the set of all proper derived varieties of V included in V. We examine dimensions of some varieties in the lattice of all varieties of a given type τ. Dimensions of varieties of lattices and all subvarieties...
Denecke and Reichel have described a method of studying the lattice of all varieties of a given type by using monoids of hypersubstitutions. In this paper we develop a Galois correspondence between monoids of hypersubstitutions of a given type and lattices of subvarieties of a given variety of that type. We then apply the results obtained to the lattice of varieties of bands (idempotent semigroups), and study the complete sublattices of this lattice obtained through the Galois correspondence.
The main result of this paper is a description of totally commutative idempotent groupoids. In particular, we show that if an idempotent groupoid (G,·) has precisely m ≥ 2 distinct essentially binary polynomials and they are all commutative, then G contains a subgroupoid isomorphic to the groupoid described below. In [2], this fact was proved for m = 2.
A (usual) hypersubstitution of type τ is a function which takes each operation symbol of the type to a term of the type, of the same arity. The set of all hypersubstitutions of a fixed type τ forms a monoid under composition, and semigroup properties of this monoid have been studied by a number of authors. In particular, idempotent and regular elements, and the Green’s relations, have been studied for type (n) by S.L. Wismath. A generalized hypersubstitution of type τ=(n) is a mapping σ which takes...
In this paper it is proved that there does not exist a function for the language of positive and generalized conditional terms that behaves the same as the discriminator for the language of conditional terms.
A method is presented for proving primality and functional completeness theorems, which makes use of the operation-relation duality. By the result of Sierpiński, we have to investigate relations generated by the two-element subsets of only. We show how the method applies for proving Słupecki’s classical theorem by generating diagonal relations from each pair of k-tuples.
For each clone C on a set A there is an associated equivalence relation analogous to Green's R-relation, which relates two operations on A if and only if each one is a substitution instance of the other using operations from C. We study the maximal and submaximal clones on a three-element set and determine which of them have only finitely many relative R-classes.
The aim of this paper is to describe how varieties of algebras of type τ can be classified by using the form of the terms which build the (defining) identities of the variety. There are several possibilities to do so. In [3], [19], [15] normal identities were considered, i.e. identities which have the form x ≈ x or s ≈ t, where s and t contain at least one operation symbol. This was generalized in [14] to k-normal identities and in [4] to P-compatible identities. More generally, we select a subset...
A characterization of all classes of idempotent groupoids having no more than two essentially binary term operations with respect to small finite models is given.