Multiple Lattice Packings and Coverings of Spheres.
We prove a conjecture due to Goncharov and Manin which states that the periods of the moduli spaces of Riemann spheres with marked points are multiple zeta values. We do this by introducing a differential algebra of multiple polylogarithms on and proving that it is closed under the operation of taking primitives. The main idea is to apply a version of Stokes’ formula iteratively to reduce each period integral to multiple zeta values. We also give a geometric interpretation of the double shuffle...
In this article we study the problem of finding such finite groups that the modular forms associated with all elements of these groups by means of a certain faithful representation belong to a special class of modular forms (so-called multiplicative products). This problem is open.We find metacyclic groups with such property and describe the Sylow -subgroups, for such groups. We also give a review of the results about the connection between multiplicative -products and elements of finite orders...
We show that the set obtained by adding all sufficiently large integers to a fixed quadratic algebraic number is multiplicatively dependent. So also is the set obtained by adding rational numbers to a fixed cubic algebraic number. Similar questions for algebraic numbers of higher degrees are also raised. These are related to the Prouhet-Tarry-Escott type problems and can be applied to the zero-distribution and universality of some zeta-functions.