On arithmetic in Mordell-Weil groups
Let and a,q ∈ ℚ. Denote by the set of rational numbers d such that a, a + q, ..., a + (m-1)q form an arithmetic progression in the Edwards curve . We study the set and we parametrize it by the rational points of an algebraic curve.
Assuming Martin's axiom we show that if X is a dyadic space of weight at most continuum then every Radon measure on X admits a uniformly distributed sequence. This answers a problem posed by Mercourakis [10]. Our proof is based on an auxiliary result concerning finitely additive measures on ω and asymptotic density.