Rational sequences converging to .
Lupaş, Alexandru, Lupaş, Luciana (2002)
General Mathematics
Maciej Ulas (2014)
Acta Arithmetica
We present some results concerning the unirationality of the algebraic variety given by the equation , where k is a number field, K=k(α), α is a root of an irreducible polynomial h(x) = x³ + ax + b ∈ k[x] and f ∈ k[t]. We are mainly interested in the case of pure cubic extensions, i.e. a = 0 and b ∈ k∖k³. We prove that if deg f = 4 and contains a k-rational point (x₀,y₀,z₀,t₀) with f(t₀)≠0, then is k-unirational. A similar result is proved for a broad family of quintic polynomials f satisfying...
Bas Edixhoven (1993/1994)
Séminaire Bourbaki
Hwajong Yoo (2016)
Acta Arithmetica
Let p be a prime greater than 3. Consider the modular curve X₀(3p) over ℚ and its Jacobian variety J₀(3p) over ℚ. Let (3p) and (3p) be the group of rational torsion points on J₀(3p) and the cuspidal group of J₀(3p), respectively. We prove that the 3-primary subgroups of (3p) and (3p) coincide unless p ≡ 1 (mod 9) and .
Sunic, Zoran (2007)
Journal of Integer Sequences [electronic only]
Rusin, David J. (1998)
The New York Journal of Mathematics [electronic only]
Juan Varona (2006)
Open Mathematics
We give a short proof to characterize the cases when arccos(√r), the arccosine of the squareroot of a rational number r ∈ [0, 1], is a rational multiple of π: This happens exactly if r is an integer multiple of 1/4. The proof relies on the well-known recurrence relation for the Chebyshev polynomials of the first kind.
Hans Günther Kopetzky (1980)
Monatshefte für Mathematik
G. Frey (1982)
Journal für die reine und angewandte Mathematik
Theodor Schneider (1973/1974)
Séminaire Delange-Pisot-Poitou. Théorie des nombres
K. Schwering (1895)
Journal für die reine und angewandte Mathematik
Norbert SCHAPPACHER (1981/1982)
Seminaire de Théorie des Nombres de Bordeaux
Hidenori Katsurada (1994)
Manuscripta mathematica
William A. Webb (1974)
Elemente der Mathematik
Ashvin Rajan, François Ramaroson (2007)
Acta Arithmetica
Zhuravlev, V.G. (2005)
Journal of Mathematical Sciences (New York)
Roland Auer (2000)
Acta Arithmetica
T. Downarowicz (1999)
Colloquium Mathematicae
Given a 0-1 sequence x in which both letters occur with density 1/2, do there exist arbitrarily long arithmetic progressions along which x reads 010101...? We answer the above negatively by showing that a certain regular triadic Toeplitz sequence does not have this property. On the other hand, we prove that if x is a generalized binary Morse sequence then each block can be read in x along some arithmetic progression.
Sudesh K. Gogia, Indar S. Luthar (1979)
Colloquium Mathematicae
Antonín Sochor (1975)
Commentationes Mathematicae Universitatis Carolinae