Quadratische und kubische Restkriterien für das Auftreten einer Fibonacci-Primitivwurzel.
Pour tout entier et certains entiers , les nombres premiers - congrus à 1 modulo - tels que soit le résidu d’une puissance -ième modulo sont caractérisés par le fait que certains systèmes de formes quadratiques à coefficients entiers en variables représentent le -uplet . La démonstration de ce résultat est accompagnée d’une méthode explicite de construction de ces systèmes.
This paper has been inspired by the endeavour of a large number of mathematicians to discover a Fibonacci-Wieferich prime. An exhaustive computer search has not been successful up to the present even though there exists a conjecture that there are infinitely many such primes. This conjecture is based on the assumption that the probability that a prime is Fibonacci-Wieferich is equal to . According to our computational results and some theoretical consideratons, another form of probability can...
In this paper a remarkable simple proof of the Gauss’s generalization of the Wilson’s theorem is given. The proof is based on properties of a subgroup generated by element of order 2 of a finite abelian group. Some conditions equivalent to the cyclicity of (Φ(n), ·n), where n > 2 is an integer are presented, in particular, a condition for the existence of the unique element of order 2 in such a group.