On sets characterizing additive arithmetical functions, I
Let σ(n) denote the sum of positive divisors of the integer n, and let ϕ denote Euler's function, that is, ϕ(n) is the number of integers in the interval [1,n] that are relatively prime to n. It has been conjectured by Mąkowski and Schinzel that σ(ϕ(n))/n ≥ 1/2 for all n. We show that σ(ϕ(n))/n → ∞ on a set of numbers n of asymptotic density 1. In addition, we study the average order of σ(ϕ(n))/n as well as its range. We use similar methods to prove a conjecture of Erdős that ϕ(n-ϕ(n)) < ϕ(n)...
If n is a positive integer such that ϕ(n)σ(n) = m² for some positive integer m, then m ≤ n. We put m = n-a and we study the positive integers a arising in this way.
Let H(n) = σ(ϕ(n))/ϕ(σ(n)), where ϕ(n) is Euler's function and σ(n) stands for the sum of the positive divisors of n. We obtain the maximal and minimal orders of H(n) as well as its average order, and we also prove two density theorems. In particular, we answer a question raised by Golomb.