Several inequalities about the number of positive divisors of a natural number .
We examine an arithmetical function defined by recursion relations on the sequence and obtain sufficient condition(s) for the sequence to change sign infinitely often. As an application we give criteria for infinitely many sign changes of Chebyshev polynomials and that of sequence formed by the Fourier coefficients of a cusp form.
In this expository paper, we present several open problerns in number theory that have arisen while doing research in group theory. These problems are on arithmetical functions or partitions. Solving some of these problems would allow to solve some open problem in group theory.[Proceedings of the Primeras Jornadas de Teoría de Números (Vilanova i la Geltrú (Barcelona), 30 June - 2 July 2005)].