Sur une proposition empirique énoncée au Bulletin
Answering a question of Erdős, we show that a positive proportion of even numbers are in the form s(n), where s(n) = σ(n) - n, the sum of proper divisors of n.
We study , the ring of arithmetical functions with unitary convolution, giving an isomorphism between and a generalized power series ring on infinitely many variables, similar to the isomorphism of Cashwell-Everett [NumThe] between the ring of arithmetical functions with Dirichlet convolution and the power series ring on countably many variables. We topologize it with respect to a natural norm, and show that all ideals are quasi-finite. Some elementary results on factorization into atoms...