Displaying 41 – 60 of 83

Showing per page

On Square-Free Numbers

Adam Grabowski (2013)

Formalized Mathematics

In the article the formal characterization of square-free numbers is shown; in this manner the paper is the continuation of [19]. Essentially, we prepared some lemmas for convenient work with numbers (including the proof that the sequence of prime reciprocals diverges [1]) according to [18] which were absent in the Mizar Mathematical Library. Some of them were expressed in terms of clusters’ registrations, enabling automatization machinery available in the Mizar system. Our main result of the article...

On the arithmetic of arithmetical congruence monoids

M. Banister, J. Chaika, S. T. Chapman, W. Meyerson (2007)

Colloquium Mathematicae

Let ℕ represent the positive integers and ℕ₀ the non-negative integers. If b ∈ ℕ and Γ is a multiplicatively closed subset of b = / b , then the set H Γ = x | x + b Γ 1 is a multiplicative submonoid of ℕ known as a congruence monoid. An arithmetical congruence monoid (or ACM) is a congruence monoid where Γ = ā consists of a single element. If H Γ is an ACM, then we represent it with the notation M(a,b) = (a + bℕ₀) ∪ 1, where a, b ∈ ℕ and a² ≡ a (mod b). A classical 1954 result of James and Niven implies that the only ACM...

On the Delta set of a singular arithmetical congruence monoid

Paul Baginski, Scott T. Chapman, George J. Schaeffer (2008)

Journal de Théorie des Nombres de Bordeaux

If a and b are positive integers with a b and a 2 a mod b , then the set M a , b = { x : x a mod b or x = 1 } is a multiplicative monoid known as an arithmetical congruence monoid (or ACM). For any monoid M with units M × and any x M M × we say that t is a factorization length of x if and only if there exist irreducible elements y 1 , ... , y t of M and x = y 1 y t . Let ( x ) = { t 1 , ... , t j } be the set of all such lengths (where t i < t i + 1 whenever i < j ). The Delta-set of the element x is defined as the set of gaps in ( x ) : Δ ( x ) = { t i + 1 - t i : 1 i < k } and the Delta-set of the monoid M is given by x M M × Δ ( x ) . We consider the Δ ( M ) when M = M a , b is an ACM with...

On the equation ϕ ( | x m - y m | ) = 2 n

Florian Luca (2000)

Mathematica Bohemica

In this paper we investigate the solutions of the equation in the title, where φ is the Euler function. We first show that it suffices to find the solutions of the above equation when m = 4 and x and y are coprime positive integers. For this last equation, we show that aside from a few small solutions, all the others are in a one-to-one correspondence with the Fermat primes.

On the largest prime factor of n ! + 2 n - 1

Florian Luca, Igor E. Shparlinski (2005)

Journal de Théorie des Nombres de Bordeaux

For an integer n 2 we denote by P ( n ) the largest prime factor of n . We obtain several upper bounds on the number of solutions of congruences of the form n ! + 2 n - 1 0 ( mod q ) and use these bounds to show that lim sup n P ( n ! + 2 n - 1 ) / n ( 2 π 2 + 3 ) / 18 .

Primality test for numbers of the form ( 2 p ) 2 n + 1

Yingpu Deng, Dandan Huang (2015)

Acta Arithmetica

We describe a primality test for M = ( 2 p ) 2 n + 1 with an odd prime p and a positive integer n, which are a particular type of generalized Fermat numbers. We also present special primality criteria for all odd prime numbers p not exceeding 19. All these primality tests run in deterministic polynomial time in the input size log₂M. A special 2pth power reciprocity law is used to deduce our result.

Prime constellations in triangles with binomial coefficient congruences

Larry Ericksen (2009)

Acta Mathematica Universitatis Ostraviensis

The primality of numbers, or of a number constellation, will be determined from residue solutions in the simultaneous congruence equations for binomial coefficients found in Pascal’s triangle. A prime constellation is a set of integers containing all prime numbers. By analyzing these congruences, we can verify the primality of any number. We present different arrangements of binomial coefficient elements for Pascal’s triangle, such as by the row shift method of Mann and Shanks and especially by...

Prime Factorization of Sums and Differences of Two Like Powers

Rafał Ziobro (2016)

Formalized Mathematics

Representation of a non zero integer as a signed product of primes is unique similarly to its representations in various types of positional notations [4], [3]. The study focuses on counting the prime factors of integers in the form of sums or differences of two equal powers (thus being represented by 1 and a series of zeroes in respective digital bases). Although the introduced theorems are not particularly important, they provide a couple of shortcuts useful for integer factorization, which could...

Currently displaying 41 – 60 of 83