Notes sur la théorie des fractions continues et sur certaines séries.
We show that, with suitable modification, the upper bound estimates of Stolt for the fundamental integer solutions of the Diophantine equation Au²+Buv+Cv²=N, where A>0, N≠0 and B²-4AC is positive and nonsquare, in fact characterize the fundamental solutions. As a corollary, we get a corresponding result for the equation u²-dv²=N, where d is positive and nonsquare, in which case the upper bound estimates were obtained by Nagell and Chebyshev.