Displaying 161 – 180 of 228

Showing per page

Sur la somme des quotients partiels du développement en fraction continue

D. Barbolosi, C. Faivre (2001)

Colloquium Mathematicae

Let [0;a₁(x),a₂(x),…] be the regular continued fraction expansion of an irrational x ∈ [0,1]. We prove mainly that, for α > 0, β ≥ 0 and for almost all x ∈ [0,1], l i m n ( a ( x ) + + a ( x ) ) / n l o g n = α / l o g 2 if α < 1 and β ≥ 0, l i m n ( a ( x ) + + a ( x ) ) / n l o g n = 1 / l o g 2 if α = 1 and β < 1, and, if α > 1 or α = 1 and β >1, l i m i n f n ( a ( x ) + + a ( x ) ) / n l o g n = 1 / l o g 2 , l i m s u p n ( a ( x ) + + a ( x ) ) / n l o g n = , where a i ( x ) = a i ( x ) if a i ( x ) n α l o g β n and a i ( x ) = 0 otherwise, for all i ∈ 1,…,n.

Sur le développement en fraction continue d’une généralisation de la cubique de Baum et Sweet

Alina Firicel (2010)

Journal de Théorie des Nombres de Bordeaux

En 1976, Baum et Sweet ont donné le premier exemple d’une série formelle algébrique de degré 3 sur 𝔽 2 ( T ) ayant un développement en fraction continue dont les quotients partiels sont tous des polynômes en T de degré 1 ou 2 . Cette série formelle est l’unique solution dans le corps 𝔽 2 ( ( T - 1 ) ) de l’équation T X 3 + X - T = 0 . En 1986, Mills et Robbins ont décrit un algorithme permettant de calculer le développement en fraction continue de la série de Baum et Sweet.Dans cet article, nous considérons les équations plus générales...

Currently displaying 161 – 180 of 228