Displaying 41 – 60 of 266

Showing per page

Combinatorial and arithmetical properties of infinite words associated with non-simple quadratic Parry numbers

Lubomíra Balková, Edita Pelantová, Ondřej Turek (2007)

RAIRO - Theoretical Informatics and Applications

We study some arithmetical and combinatorial properties of β-integers for β being the larger root of the equation x2 = mx - n,m,n ∈ ℵ, m ≥ n +2 ≥ 3. We determine with the accuracy of ± 1 the maximal number of β-fractional positions, which may arise as a result of addition of two β-integers. For the infinite word uβ> coding distances between the consecutive β-integers, we determine precisely also the balance. The word uβ> is the only fixed point of the morphism A → Am-1B and B → Am-n-1B. In...

Comments on the height reducing property

Shigeki Akiyama, Toufik Zaimi (2013)

Open Mathematics

A complex number α is said to satisfy the height reducing property if there is a finite subset, say F, of the ring ℤ of the rational integers such that ℤ[α] = F[α]. This property has been considered by several authors, especially in contexts related to self affine tilings and expansions of real numbers in non-integer bases. We prove that a number satisfying the height reducing property, is an algebraic number whose conjugates, over the field of the rationals, are all of modulus one, or all of modulus...

Complexity of infinite words associated with beta-expansions

Christiane Frougny, Zuzana Masáková, Edita Pelantová (2004)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

We study the complexity of the infinite word u β associated with the Rényi expansion of 1 in an irrational base β > 1 . When β is the golden ratio, this is the well known Fibonacci word, which is sturmian, and of complexity ( n ) = n + 1 . For β such that d β ( 1 ) = t 1 t 2 t m is finite we provide a simple description of the structure of special factors of the word u β . When t m = 1 we show that ( n ) = ( m - 1 ) n + 1 . In the cases when t 1 = t 2 = = t m - 1 or t 1 > max { t 2 , , t m - 1 } we show that the first difference of the complexity function ( n + 1 ) - ( n ) takes value in { m - 1 , m } for every n , and consequently we determine...

Complexity of infinite words associated with beta-expansions

Christiane Frougny, Zuzana Masáková, Edita Pelantová (2010)

RAIRO - Theoretical Informatics and Applications

We study the complexity of the infinite word uβ associated with the Rényi expansion of 1 in an irrational base β > 1. When β is the golden ratio, this is the well known Fibonacci word, which is Sturmian, and of complexity C(n) = n + 1. For β such that dβ(1) = t1t2...tm is finite we provide a simple description of the structure of special factors of the word uβ. When tm=1 we show that C(n) = (m - 1)n + 1. In the cases when t1 = t2 = ... tm-1or t1 > max{t2,...,tm-1} we show that the first difference of...

Corrigendum : “Complexity of infinite words associated with beta-expansions”

Christiane Frougny, Zuzana Masáková, Edita Pelantová (2004)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

We add a sufficient condition for validity of Propo- sition 4.10 in the paper Frougny et al. (2004). This condition is not a necessary one, it is nevertheless convenient, since anyway most of the statements in the paper Frougny et al. (2004) use it.

Corrigendum: Complexity of infinite words associated with beta-expansions

Christiane Frougny, Zuzana Masáková, Edita Pelantová (2010)

RAIRO - Theoretical Informatics and Applications

We add a sufficient condition for validity of Propo- sition 4.10 in the paper Frougny et al. (2004). This condition is not a necessary one, it is nevertheless convenient, since anyway most of the statements in the paper Frougny et al. (2004) use it.


Currently displaying 41 – 60 of 266