Page 1 Next

Displaying 1 – 20 of 29

Showing per page

Gaussian Integers

Yuichi Futa, Hiroyuki Okazaki, Daichi Mizushima, Yasunari Shidama (2013)

Formalized Mathematics

Gaussian integer is one of basic algebraic integers. In this article we formalize some definitions about Gaussian integers [27]. We also formalize ring (called Gaussian integer ring), Z-module and Z-algebra generated by Gaussian integer mentioned above. Moreover, we formalize some definitions about Gaussian rational numbers and Gaussian rational number field. Then we prove that the Gaussian rational number field and a quotient field of the Gaussian integer ring are isomorphic.

Gaussiana

František Josef Studnička (1877)

Časopis pro pěstování mathematiky a fysiky

General Dirichlet series, arithmetic convolution equations and Laplace transforms

Helge Glöckner, Lutz G. Lucht, Štefan Porubský (2009)

Studia Mathematica

In the earlier paper [Proc. Amer. Math. Soc. 135 (2007)], we studied solutions g: ℕ → ℂ to convolution equations of the form a d g d + a d - 1 g ( d - 1 ) + + a g + a = 0 , where a , . . . , a d : are given arithmetic functions associated with Dirichlet series which converge on some right half plane, and also g is required to be such a function. In this article, we extend our previous results to multidimensional general Dirichlet series of the form x X f ( x ) e - s x ( s k ), where X [ 0 , ) k is an additive subsemigroup. If X is discrete and a certain solvability criterion is satisfied,...

Generalized golden ratios of ternary alphabets

Vilmos Komornik, Anna Chiara Lai, Marco Pedicini (2011)

Journal of the European Mathematical Society

Expansions in noninteger bases often appear in number theory and probability theory, and they are closely connected to ergodic theory, measure theory and topology. For two-letter alphabets the golden ratio plays a special role: in smaller bases only trivial expansions are unique, whereas in greater bases there exist nontrivial unique expansions. In this paper we determine the corresponding critical bases for all three-letter alphabets and we establish the fractal nature of these bases in dependence...

Generalizing a theorem of Schur

Lenny Jones (2014)

Czechoslovak Mathematical Journal

In a letter written to Landau in 1935, Schur stated that for any integer t > 2 , there are primes p 1 < p 2 < < p t such that p 1 + p 2 > p t . In this note, we use the Prime Number Theorem and extend Schur’s result to show that for any integers t k 1 and real ϵ > 0 , there exist primes p 1 < p 2 < < p t such that p 1 + p 2 + + p k > ( k - ϵ ) p t .

Currently displaying 1 – 20 of 29

Page 1 Next