Displaying 181 – 200 of 375

Showing per page

On Rowland's sequence.

Chamizo, Fernando, Raboso, Dulcinea, Ruiz-Cabello, Serafín (2011)

The Electronic Journal of Combinatorics [electronic only]

On semiregular digraphs of the congruence x k y ( mod n )

Lawrence Somer, Michal Křížek (2007)

Commentationes Mathematicae Universitatis Carolinae

We assign to each pair of positive integers n and k 2 a digraph G ( n , k ) whose set of vertices is H = { 0 , 1 , , n - 1 } and for which there is a directed edge from a H to b H if a k b ( mod n ) . The digraph G ( n , k ) is semiregular if there exists a positive integer d such that each vertex of the digraph has indegree d or 0. Generalizing earlier results of the authors for the case in which k = 2 , we characterize all semiregular digraphs G ( n , k ) when k 2 is arbitrary.

On some problems of Mąkowski-Schinzel and Erdős concerning the arithmetical functions ϕ and σ

Florian Luca, Carl Pomerance (2002)

Colloquium Mathematicae

Let σ(n) denote the sum of positive divisors of the integer n, and let ϕ denote Euler's function, that is, ϕ(n) is the number of integers in the interval [1,n] that are relatively prime to n. It has been conjectured by Mąkowski and Schinzel that σ(ϕ(n))/n ≥ 1/2 for all n. We show that σ(ϕ(n))/n → ∞ on a set of numbers n of asymptotic density 1. In addition, we study the average order of σ(ϕ(n))/n as well as its range. We use similar methods to prove a conjecture of Erdős that ϕ(n-ϕ(n)) < ϕ(n)...

Currently displaying 181 – 200 of 375