Displaying 261 – 280 of 1815

Showing per page

Bounds for frequencies of residues of second-order recurrences modulo p r

Walter Carlip, Lawrence Somer (2007)

Mathematica Bohemica

The authors examine the frequency distribution of second-order recurrence sequences that are not p -regular, for an odd prime p , and apply their results to compute bounds for the frequencies of p -singular elements of p -regular second-order recurrences modulo powers of the prime p . The authors’ results have application to the p -stability of second-order recurrence sequences.

Bounds for the counting function of the Jordan-Pólya numbers

Jean-Marie De Koninck, Nicolas Doyon, A. Arthur Bonkli Razafindrasoanaivolala, William Verreault (2020)

Archivum Mathematicum

A positive integer n is said to be a Jordan-Pólya number if it can be written as a product of factorials. We obtain non-trivial lower and upper bounds for the number of Jordan-Pólya numbers not exceeding a given number x .

Calculating a determinant associated with multiplicative functions

P. Codecá, M. Nair (2002)

Bollettino dell'Unione Matematica Italiana

Let h be a complex valued multiplicative function. For any N N , we compute the value of the determinant D N := det i | N , j | N h i , j i j where i , j denotes the greatest common divisor of i and j , which appear in increasing order in rows and columns. Precisely we prove that D N = p l N 1 p l l + 1 i = 1 l h p i - h p i - 1 τ N / p l . This means that D N 1 / τ N is a multiplicative function of N . The algebraic apparatus associated with this result allows us to prove the following two results. The first one is the characterization of real multiplicative functions f n , with 0 f p < 1 , as minimal values of certain...

Calculation of the greatest common divisor of perturbed polynomials

Zítko, Jan, Eliaš, Ján (2013)

Programs and Algorithms of Numerical Mathematics

The coefficients of the greatest common divisor of two polynomials f and g (GCD ( f , g ) ) can be obtained from the Sylvester subresultant matrix S j ( f , g ) transformed to lower triangular form, where 1 j d and d = deg(GCD ( f , g ) ) needs to be computed. Firstly, it is supposed that the coefficients of polynomials are given exactly. Transformations of S j ( f , g ) for an arbitrary allowable j are in details described and an algorithm for the calculation of the GCD ( f , g ) is formulated. If inexact polynomials are given, then an approximate greatest...

Can a Lucas number be a sum of three repdigits?

Chèfiath A. Adegbindin, Alain Togbé (2020)

Commentationes Mathematicae Universitatis Carolinae

We give the answer to the question in the title by proving that L 18 = 5778 = 5555 + 222 + 1 is the largest Lucas number expressible as a sum of exactly three repdigits. Therefore, there are many Lucas numbers which are sums of three repdigits.

Cauchy multiplication and periodic functions (mod r).

Pentti Haukkanen, R. Sivaramakrishnan (1991)

Collectanea Mathematica

We analise periodic functions (mod r), keeping Cauchy multiplication as the basic tool, and pay particular attention to even functions (mod r) having the property f(n) = f((n,r)) for all n. We provide some new aspects into the Hilbert space structure of even functions (mod r) and make use of linera transformations to interpret the known number-theoretic formulae involving solutions of congruences.

Currently displaying 261 – 280 of 1815