El Famoso Polinomio Generador De Primos De Euler Y El Numero De Clase De Los Cuerpos Cuadraticos Imaginarios.
Paulo Ribenboim (1987)
Revista colombiana de matematicas
SooAh Chang, Scott T. Chapman, William W. Smith (2007)
Mathematica Slovaca
Dieter Blessenohl, Robert Bil (1996)
Elemente der Mathematik
Peter Läuchli (1980)
Elemente der Mathematik
N. Costa Pereira (1989)
Acta Arithmetica
Gutnik, Leonid (2010)
Advances in Difference Equations [electronic only]
van der Poorten, Alfred J. (2005)
Journal of Integer Sequences [electronic only]
Barry R. Smith (2015)
Acta Arithmetica
We show that for a fixed integer n ≠ ±2, the congruence x² + nx ± 1 ≡ 0 (mod α) has the solution β with 0 < β < α if and only if α/β has a continued fraction expansion with sequence of quotients having one of a finite number of possible asymmetry types. This generalizes the old theorem that a rational number α/β > 1 in lowest terms has a symmetric continued fraction precisely when β² ≡ ±1(mod α ).
Fripertinger, Harald (1991)
Séminaire Lotharingien de Combinatoire [electronic only]
Jacques Justin (2005)
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
We associate with a word on a finite alphabet an episturmian (or Arnoux-Rauzy) morphism and a palindrome. We study their relations with the similar ones for the reversal of . Then when
Jacques Justin (2010)
RAIRO - Theoretical Informatics and Applications
We associate with a word w on a finite alphabet A an episturmian (or Arnoux-Rauzy) morphism and a palindrome. We study their relations with the similar ones for the reversal of w. Then when |A|=2 we deduce, using the Sturmian words that are the fixed points of the two morphisms, a proof of a Galois theorem on purely periodic continued fractions whose periods are the reversal of each other.
E. Nazarewicz, M. O'Brien, M. O'Neill, C. Staples (2007)
Acta Arithmetica
Luca, Florian (2000)
Divulgaciones Matemáticas
Panaitopol, Laurenţiu (2003)
JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only]
Yuqing Zhang (2011)
Studia Mathematica
Let = [0,1) be the additive group of real numbers modulo 1, α ∈ be an irrational number and t ∈ . We study ergodicity of skew product extensions T : × ℤ² → × ℤ², .
G. Bhowmik, O. Ramaré (1998)
Acta Arithmetica
Haukkanen, Pentti (1995)
Portugaliae Mathematica
Andrzej Schinzel, Tibor Šalát (1995)
Mathematica Slovaca
Volker Schulze (1982)
Acta Arithmetica
Cao Hui-Zhong (1991)
Compositio Mathematica