Displaying 41 – 60 of 236

Showing per page

A Menon-type identity using Klee's function

Arya Chandran, Neha Elizabeth Thomas, K. Vishnu Namboothiri (2022)

Czechoslovak Mathematical Journal

Menon’s identity is a classical identity involving gcd sums and the Euler totient function φ . A natural generalization of φ is the Klee’s function Φ s . We derive a Menon-type identity using Klee’s function and a generalization of the gcd function. This identity generalizes an identity given by Y. Li and D. Kim (2017).

A necessary and sufficient condition for the primality of Fermat numbers

Michal Křížek, Lawrence Somer (2001)

Mathematica Bohemica

We examine primitive roots modulo the Fermat number F m = 2 2 m + 1 . We show that an odd integer n 3 is a Fermat prime if and only if the set of primitive roots modulo n is equal to the set of quadratic non-residues modulo n . This result is extended to primitive roots modulo twice a Fermat number.

Currently displaying 41 – 60 of 236