Previous Page 2

Displaying 21 – 33 of 33

Showing per page

On sum-sets and product-sets of complex numbers

József Solymosi (2005)

Journal de Théorie des Nombres de Bordeaux

We give a simple argument that for any finite set of complex numbers A , the size of the the sum-set, A + A , or the product-set, A · A , is always large.

On the prime density of Lucas sequences

Pieter Moree (1996)

Journal de théorie des nombres de Bordeaux

The density of primes dividing at least one term of the Lucas sequence L n ( P ) n = 0 , defined by L 0 ( P ) = 2 , L 1 ( P ) = P and L n ( P ) = P L n - 1 ( P ) + L n - 2 ( P ) for n 2 , with P an arbitrary integer, is determined.

On the statistical and σ-cores

Hüsamettın Çoşkun, Celal Çakan, Mursaleen (2003)

Studia Mathematica

In [11] and [7], the concepts of σ-core and statistical core of a bounded number sequence x have been introduced and also some inequalities which are analogues of Knopp’s core theorem have been proved. In this paper, we characterize the matrices of the class ( S m , V σ ) r e g and determine necessary and sufficient conditions for a matrix A to satisfy σ-core(Ax) ⊆ st-core(x) for all x ∈ m.

On weighted densities

Rita Giuliano-Antonini, Georges Grekos, Ladislav Mišík (2007)

Czechoslovak Mathematical Journal

The continuity of densities given by the weight functions n α , α [ - 1 , [ , with respect to the parameter α is investigated.

Currently displaying 21 – 33 of 33

Previous Page 2