On the number of prime factors of a finite arithmetical progression
In his proof of Szemerédi’s Theorem, Gowers introduced certain norms that are defined on a parallelepiped structure. A natural question is on which sets a parallelepiped structure (and thus a Gowers norm) can be defined. We focus on dimensions and and show when this possible, and describe a correspondence between the parallelepiped structures and nilpotent groups.
Let B be a set of complex numbers of size n. We prove that the length of the longest arithmetic progression contained in the product set B.B = bb’ | b,b’ ∈ B cannot be greater than O((nlog²n)/(loglogn)) and present an example of a product set containing an arithmetic progression of length Ω(nlogn). For sets of complex numbers we obtain the upper bound .
Récemment, B. Green et T. Tao ont montré que : l’ensemble des nombres premiers contient des progressions arithmétiques de toutes longueurs répondant ainsi à une question ancienne à la formulation particulièrement simple. La démonstration n’utilise aucune des méthodes “transcendantes” ni aucun des grands théorèmes de la théorie analytique des nombres. Elle est écrite dans un esprit proche de celui de la théorie ergodique, en particulier de celui de la preuve par Furstenberg du théorème de Szemerédi,...