On an extension of a theorem of S. Chowla
The aim of this article is to investigate two new classes of quaternions, namely, balancing and Lucas-balancing quaternions that are based on balancing and Lucas-balancing numbers, respectively. Further, some identities including Binet's formulas, summation formulas, Catalan's identity, etc. concerning these quaternions are also established.
In this paper, a new generalization of Mersenne bihyperbolic numbers is introduced. Some of the properties of presented numbers are given. A general bilinear index-reduction formula for the generalized bihyperbolic Mersenne numbers is obtained. This result implies the Catalan, Cassini, Vajda, d'Ocagne and Halton identities. Moreover, generating function and matrix generators for these numbers are presented.
Two linear numeration systems, with characteristic polynomial equal to the minimal polynomial of two Pisot numbers and respectively, such that and are multiplicatively dependent, are considered. It is shown that the conversion between one system and the other one is computable by a finite automaton. We also define a sequence of integers which is equal to the number of periodic points of a sofic dynamical system associated with some Parry number.
Two linear numeration systems, with characteristic polynomial equal to the minimal polynomial of two Pisot numbers β and γ respectively, such that β and γ are multiplicatively dependent, are considered. It is shown that the conversion between one system and the other one is computable by a finite automaton. We also define a sequence of integers which is equal to the number of periodic points of a sofic dynamical system associated with some Parry number.
Let and let be the -generalized Pell sequence defined by for with initial conditions In this study, we handle the equation in positive integers , , , such that and give an upper bound on Also, we will show that the equation with has only one solution given by