On Pyramidal Numbers of Order 4.
We study generalized commutative Jacobsthal quaternions and generalized commutative Jacobsthal-Lucas quaternions. We present some properties of these quaternions and the relations between the generalized commutative Jacobsthal quaternions and generalized commutative Jacobsthal-Lucas quaternions.
In this paper, we find all the solutions of the Diophantine equation in positive integer variables , where is the balancing number if the exponents , are included in the set .
Letting (resp. ) be the n-th Chebyshev polynomials of the first (resp. second) kind, we prove that the sequences and for n - 2⎣n/2⎦ ≤ k ≤ n - ⎣n/2⎦ are two basis of the ℚ-vectorial space formed by the polynomials of ℚ[X] having the same parity as n and of degree ≤ n. Also and admit remarkableness integer coordinates on each of the two basis.
Let P and Q be nonzero integers. The generalized Fibonacci and Lucas sequences are defined respectively as follows: U₀ = 0, U₁ = 1, V₀ = 2, V₁ = P and , for n ≥ 1. In this paper, when w ∈ 1,2,3,6, for all odd relatively prime values of P and Q such that P ≥ 1 and P² + 4Q > 0, we determine all n and m satisfying the equation Uₙ = wUₘx². In particular, when k|P and k > 1, we solve the equations Uₙ = kx² and Uₙ = 2kx². As a result, we determine all n such that Uₙ = 6x².
Let p be an odd prime and let a be a positive integer. In this paper we investigate the sum , where h and m are p-adic integers with m ≢ 0 (mod p). For example, we show that if h ≢ 0 (mod p) and , then , where (·/·) denotes the Jacobi symbol. Here is another remarkable congruence: If then .
In 2000, Florian Luca proved that F₁₀ = 55 and L₅ = 11 are the largest numbers with only one distinct digit in the Fibonacci and Lucas sequences, respectively. In this paper, we find terms of a linear recurrence sequence with only one block of digits in its expansion in base g ≥ 2. As an application, we generalize Luca's result by finding the Fibonacci and Lucas numbers with only one distinct block of digits of length up to 10 in its decimal expansion.