On the expansion of Fibonacci and Lucas polynomials.
In this note, we estimate the distance between two -nomial coefficients , where and is an integer.
Let and define , the -generalized Fibonacci sequence whose terms satisfy the recurrence relation , with initial conditions ( terms) and such that the first nonzero term is . The sequences and are the known Fibonacci and Tribonacci sequences, respectively. In 2005, Noe and Post made a conjecture related to the possible solutions of the Diophantine equation . In this note, we use transcendental tools to provide a general method for finding the intersections which gives evidence supporting...
We compare the growth of the least common multiple of the numbers and , where is a Lucas sequence and is some sequence of positive integers.
Let P and Q be nonzero integers. The sequences of generalized Fibonacci and Lucas numbers are defined by U₀ = 0, U₁ = 1 and for n ≥ 1, and V₀ = 2, V₁ = P and for n ≥ 1, respectively. In this paper, we assume that P ≥ 1, Q is odd, (P,Q) = 1, Vₘ ≠ 1, and . We show that there is no integer x such that when m ≥ 1 and r is an even integer. Also we completely solve the equation for m ≥ 1 and r ≥ 1 when Q ≡ 7 (mod 8) and x is an even integer. Then we show that when P ≡ 3 (mod 4) and Q ≡ 1 (mod...
For each we consider the -bonacci numbers defined by for and for When these are the usual Fibonacci numbers. Every positive integer may be expressed as a sum of distinct -bonacci numbers in one or more different ways. Let be the number of partitions of as a sum of distinct -bonacci numbers. Using a theorem of Fine and Wilf, we obtain a formula for involving sums of binomial coefficients modulo In addition we show that this formula may be used to determine the number of partitions...
The density of primes dividing at least one term of the Lucas sequence , defined by and for , with an arbitrary integer, is determined.
Let ℤ be the set of integers, and let (m,n) be the greatest common divisor of integers m and n. Let p be a prime of the form 4k+1 and p = c²+d² with c,d ∈ ℤ, and c ≡ d₀ ≡ 1 (mod 4). In the paper we determine for p = x²+(b²+4α)y² (b,x,y ∈ ℤ, 2∤b), and for p = x²+(4a²+1)y² (a,x,y∈ℤ) on the condition that (c,x+d) = 1 or (d₀,x+c) = 1. As applications we obtain the congruence for and the criterion for (if p ≡ 1 (mod 8)), where Uₙ is the Lucas sequence given by U₀ = 0, U₁ = 1 and , and b ≢...
For k ≥ 2, the k-generalized Fibonacci sequence is defined to have the initial k terms 0,0,...,0,1 and be such that each term afterwards is the sum of the k preceding terms. We will prove that the number of solutions of the Diophantine equation (under some weak assumptions) is bounded by an effectively computable constant depending only on c.