Displaying 341 – 360 of 444

Showing per page

Repdigits in generalized Pell sequences

Jhon J. Bravo, Jose L. Herrera (2020)

Archivum Mathematicum

For an integer k 2 , let ( n ) n be the k - generalized Pell sequence which starts with 0 , ... , 0 , 1 ( k terms) and each term afterwards is given by the linear recurrence n = 2 n - 1 + n - 2 + + n - k . In this paper, we find all k -generalized Pell numbers with only one distinct digit (the so-called repdigits). Some interesting estimations involving generalized Pell numbers, that we believe are of independent interest, are also deduced. This paper continues a previous work that searched for repdigits in the usual Pell sequence ( P n ( 2 ) ) n .

Repdigits in the base b as sums of four balancing numbers

Refik Keskin, Faticko Erduvan (2021)

Mathematica Bohemica

The sequence of balancing numbers ( B n ) is defined by the recurrence relation B n = 6 B n - 1 - B n - 2 for n 2 with initial conditions B 0 = 0 and B 1 = 1 . B n is called the n th balancing number. In this paper, we find all repdigits in the base b , which are sums of four balancing numbers. As a result of our theorem,...

Root location for the characteristic polynomial of a Fibonacci type sequence

Zhibin Du, Carlos Martins da Fonseca (2023)

Czechoslovak Mathematical Journal

We analyse the roots of the polynomial x n - p x n - 1 - q x - 1 for p q 1 . This is the characteristic polynomial of the recurrence relation F k , p , q ( n ) = p F k , p , q ( n - 1 ) + q F k , p , q ( n - k + 1 ) + F k , p , q ( n - k ) for n k , which includes the relations of several particular sequences recently defined. In the end, a matricial representation for such a recurrence relation is provided.

Short remark on Fibonacci-Wieferich primes

Jiří Klaška (2007)

Acta Mathematica Universitatis Ostraviensis

This paper has been inspired by the endeavour of a large number of mathematicians to discover a Fibonacci-Wieferich prime. An exhaustive computer search has not been successful up to the present even though there exists a conjecture that there are infinitely many such primes. This conjecture is based on the assumption that the probability that a prime p is Fibonacci-Wieferich is equal to 1 / p . According to our computational results and some theoretical consideratons, another form of probability can...

Sign changes of certain arithmetical function at prime powers

Rishabh Agnihotri, Kalyan Chakraborty (2021)

Czechoslovak Mathematical Journal

We examine an arithmetical function defined by recursion relations on the sequence { f ( p k ) } k and obtain sufficient condition(s) for the sequence to change sign infinitely often. As an application we give criteria for infinitely many sign changes of Chebyshev polynomials and that of sequence formed by the Fourier coefficients of a cusp form.

Solutions of the Diophantine Equation 7 X 2 + Y 7 = Z 2 from Recurrence Sequences

Hayder R. Hashim (2020)

Communications in Mathematics

Consider the system x 2 - a y 2 = b , P ( x , y ) = z 2 , where P is a given integer polynomial. Historically, the integer solutions of such systems have been investigated by many authors using the congruence arguments and the quadratic reciprocity. In this paper, we use Kedlaya’s procedure and the techniques of using congruence arguments with the quadratic reciprocity to investigate the solutions of the Diophantine equation 7 X 2 + Y 7 = Z 2 if ( X , Y ) = ( L n , F n ) (or ( X , Y ) = ( F n , L n ) ) where { F n } and { L n } represent the sequences of Fibonacci numbers and Lucas numbers respectively....

Solutions to conjectures on a nonlinear recursive equation

Özkan Öcalan, Oktay Duman (2020)

Czechoslovak Mathematical Journal

We obtain solutions to some conjectures about the nonlinear difference equation x n + 1 = α + β x n - 1 e - x n , n = 0 , 1 , , α , β > 0 . More precisely, we get not only a condition under which the equilibrium point of the above equation is globally asymptotically stable but also a condition under which the above equation has a unique positive cycle of prime period two. We also prove some further results.

Some alternating sums of Lucas numbers

Zvonko Čerin (2005)

Open Mathematics

We consider alternating sums of squares of odd and even terms of the Lucas sequence and alternating sums of their products. These alternating sums have nice representations as products of appropriate Fibonacci and Lucas numbers.

Currently displaying 341 – 360 of 444