Displaying 181 – 200 of 242

Showing per page

Products of factorials modulo p

Florian Luca, Pantelimon Stănică (2003)

Colloquium Mathematicae

We show that if p ≠ 5 is a prime, then the numbers 1 / p ( p m , . . . , m t ) | t 1 , m i 0 f o r i = 1 , . . . , t a n d i = 1 t m i = p cover all the nonzero residue classes modulo p.

q -analogues of two supercongruences of Z.-W. Sun

Cheng-Yang Gu, Victor J. W. Guo (2020)

Czechoslovak Mathematical Journal

We give several different q -analogues of the following two congruences of Z.-W. Sun: k = 0 ( p r - 1 ) / 2 1 8 k 2 k k 2 p r ( mod p 2 ) and k = 0 ( p r - 1 ) / 2 1 16 k 2 k k 3 p r ( mod p 2 ) , where p is an odd prime, r is a positive integer, and ( m n ) is the Jacobi symbol. The proofs of them require the use of some curious q -series identities, two of which are related to Franklin’s involution on partitions into distinct parts. We also confirm a conjecture of the latter author and Zeng in 2012.

Quelques valeurs prises par les polynômes de Macdonald décalés

Michel Lassalle (1999)

Annales de l'institut Fourier

Nous explicitons la valeur de certains des coefficients binomiaux généralisés associés aux polynômes de Macdonald, c’est-à-dire la valeur en certains points particuliers des polynômes de Macdonald décalés. Ces expressions font intervenir les fonctions hypergéométriques de base q .

Some congruences involving binomial coefficients

Hui-Qin Cao, Zhi-Wei Sun (2015)

Colloquium Mathematicae

Binomial coefficients and central trinomial coefficients play important roles in combinatorics. Let p > 3 be a prime. We show that T p - 1 ( p / 3 ) 3 p - 1 ( m o d p ² ) , where the central trinomial coefficient Tₙ is the constant term in the expansion of ( 1 + x + x - 1 ) . We also prove three congruences modulo p³ conjectured by Sun, one of which is k = 0 p - 1 p - 1 k 2 k k ( ( - 1 ) k - ( - 3 ) - k ) ( p / 3 ) ( 3 p - 1 - 1 ) ( m o d p ³ ) . In addition, we get some new combinatorial identities.

Currently displaying 181 – 200 of 242