On -adic analogue of -Bernstein polynomials and related integrals.
We show that some partitions related to two of Ramanujan's mock theta functions are related to indefinite quadratic forms and real quadratic fields. In particular, we examine a third order mock theta function and a fifth order mock theta function.
Let p be an odd prime and let a be a positive integer. In this paper we investigate the sum , where h and m are p-adic integers with m ≢ 0 (mod p). For example, we show that if h ≢ 0 (mod p) and , then , where (·/·) denotes the Jacobi symbol. Here is another remarkable congruence: If then .
In this note, we estimate the distance between two -nomial coefficients , where and is an integer.