Page 1

Displaying 1 – 3 of 3

Showing per page

Diagonalization and rationalization of algebraic Laurent series

Boris Adamczewski, Jason P. Bell (2013)

Annales scientifiques de l'École Normale Supérieure

We prove a quantitative version of a result of Furstenberg [20] and Deligne [14] stating that the diagonal of a multivariate algebraic power series with coefficients in a field of positive characteristic is algebraic. As a consequence, we obtain that for every prime p the reduction modulo p of the diagonal of a multivariate algebraic power series f with integer coefficients is an algebraic power series of degree at most p A and height at most A p A , where A is an effective constant that only depends on...

Drunken man infinite words complexity

Marion Le Gonidec (2008)

RAIRO - Theoretical Informatics and Applications

In this article, we study the complexity of drunken man infinite words. We show that these infinite words, generated by a deterministic and complete countable automaton, or equivalently generated by a substitution over a countable alphabet of constant length, have complexity functions equivalent to n(log2n)2 when n goes to infinity.


Currently displaying 1 – 3 of 3

Page 1