Loading [MathJax]/extensions/MathZoom.js
Un mot sturmien est la discrétisation d’une droite de pente irrationnelle. Un nombre de Sturm est la pente d’un mot sturmien qui est invariant par une substitution non triviale. Ces nombres sont certains irrationnels quadratiques caractérisés par la forme de leur développement en fraction continue. Nous donnons une caractérisation très simple des nombres de Sturm : un nombre irrationnel positif est de Sturm (de première espèce) si et seulement s’il est quadratique et à conjugué négatif.
Nous généralisons le théorème de Cobham ([2]), en démontrant qu'une partie infinie de ℕ est reconnaissable en base k (k entier strictement plus grand que un) et reconnaissable dans un système de numération associé à un nombre de Pisot unitaire (ayant une propriété arithmétique supplémentaire) si et seulement si elle est ultimement périodique.
Let be a unimodular Pisot substitution over a letter alphabet and let be the associated Rauzy fractals. In the present paper we want to investigate the boundaries () of these fractals. To this matter we define a certain graph, the so-called contact graph of . If satisfies a combinatorial condition called the super coincidence condition the contact graph can be used to set up a self-affine graph directed system whose attractors are certain pieces of the boundaries . From this graph...
Currently displaying 1 –
4 of
4