Factors of generalized Rudin-Shapiro sequences. (Facteurs des suites de Rudin-Shapiro généralisées.)
We give an automata-theoretic description of the algebraic closure of the rational function field over a finite field , generalizing a result of Christol. The description occurs within the Hahn-Mal’cev-Neumann field of “generalized power series” over . In passing, we obtain a characterization of well-ordered sets of rational numbers whose base expansions are generated by a finite automaton, and exhibit some techniques for computing in the algebraic closure; these include an adaptation to positive...
In a recent work we gave some estimations for exponential sums of the form , where Λ denotes the von Mangoldt function, f a digital function, and β a real parameter. The aim of this work is to show how these results can be used to study the statistical properties of digital functions along prime numbers.