Displaying 21 – 40 of 506

Showing per page

On a congruence of Emma Lehmer related to Euler numbers

John B. Cosgrave, Karl Dilcher (2013)

Acta Arithmetica

A congruence of Emma Lehmer (1938) for Euler numbers E p - 3 modulo p in terms of a certain sum of reciprocals of squares of integers was recently extended to prime power moduli by T. Cai et al. We generalize this further to arbitrary composite moduli n and characterize those n for which the sum in question vanishes modulo n (or modulo n/3 when 3|n). Primes for which E p - 3 0 ( m o d p ) play an important role, and we present some numerical results.

On a conjecture of Sárközy and Szemerédi

Yong-Gao Chen (2015)

Acta Arithmetica

Two infinite sequences A and B of non-negative integers are called infinite additive complements if their sum contains all sufficiently large integers. In 1994, Sárközy and Szemerédi conjectured that there exist infinite additive complements A and B with lim sup A(x)B(x)/x ≤ 1 and A(x)B(x)-x = O(minA(x),B(x)), where A(x) and B(x) are the counting functions of A and B, respectively. We prove that, for infinite additive complements A and B, if lim sup A(x)B(x)/x ≤ 1, then, for any given M > 1,...

Currently displaying 21 – 40 of 506