Marches automatiques
Ce travail consiste à étudier les comportements des marches sur les arbres homogènes suivant la suite engendrée par une substitution. Dans la première partie, on étudie d’abord les marches sans orientation sur et on détermine complètement, d’après les propriétés combinatoires de la substitution, les conditions assurant que les marches sont bornées, récurrentes ou transientes. Comme corollaire, on obtient le comportement asymptotique des sommes partielles des coefficients de la suite substitutive....
We give a graph theoretic interpretation of -Lah numbers, namely, we show that the -Lah number counting the number of -partitions of an -element set into ordered blocks is just equal to the number of matchings consisting of edges in the complete bipartite graph with partite sets of cardinality and (, ). We present five independent proofs including a direct, bijective one. Finally, we close our work with a similar result for -Stirling numbers of the second kind.
Let be a given nonempty set of positive integers and any set of nonnegative integers. Let denote the upper asymptotic density of . We consider the problem of finding where the supremum is taken over all sets satisfying that for each , In this paper we discuss the values and bounds of where for all even integers and for all sufficiently large odd integers with and
Let be the Lucas sequence. We show that the Diophantine equation has only the nonnegative integer solutions , , , , , , where is the th Mersenne number and .