.
We introduce a new class of bi-univalent functions defined in the open unit disc and connected with a -convolution. We find estimates for the general Taylor-Maclaurin coefficients of the functions in this class by using Faber polynomial expansions and we obtain an estimation for the Fekete-Szegö problem for this class.
We consider a conjecture of Erdős and Rosenfeld and a conjecture of Ruzsa when the number is a perfect square. In particular, we show that every perfect square n can have at most five divisors between and .
Using the lower bound of linear forms in logarithms of Matveev and the theory of continued fractions by means of a variation of a result of Dujella and Pethő, we find all -Fibonacci and -Lucas numbers which are Fermat numbers. Some more general results are given.