Calcul de la dynamique de transformations linéaires contractantes mod 1 et arbre de Farey
We give the answer to the question in the title by proving that is the largest Lucas number expressible as a sum of exactly three repdigits. Therefore, there are many Lucas numbers which are sums of three repdigits.
An open problem of arithmetic Ramsey theory asks if given an r-colouring c:ℕ → 1,...,r of the natural numbers, there exist x,y ∈ ℕ such that c(xy) = c(x+y) apart from the trivial solution x = y = 2. More generally, one could replace x+y with a binary linear form and xy with a binary quadratic form. In this paper we examine the analogous problem in a finite field . Specifically, given a linear form L and a quadratic form Q in two variables, we provide estimates on the necessary size of to guarantee...
Let α,β ∈ ℝ be fixed with α > 1, and suppose that α is irrational and of finite type. We show that there are infinitely many Carmichael numbers composed solely of primes from the non-homogeneous Beatty sequence . We conjecture that the same result holds true when α is an irrational number of infinite type.
In this paper some decompositions of Cauchy polynomials, Ferrers-Jackson polynomials and polynomials of the form x 2n + y 2n , n ∈ ℕ, are studied. These decompositions are used to generate the identities for powers of Fibonacci and Lucas numbers as well as for powers of the so called conjugate recurrence sequences. Also, some new identities for Chebyshev polynomials of the first kind are presented here.
In this paper, we apply character sum estimates to study products of factorials modulo .