Notes on power LCM matrices
MSC 2010: 11B83, 05A19, 33C45This paper is dealing with the Hankel determinants of the special number sequences given in an integral form. We show that these sequences satisfy a generalized convolution property and the Hankel determinants have the generalized Somos-4 property. Here, we recognize well known number sequences such as: the Fibonacci, Catalan, Motzkin and SchrÄoder sequences, like special cases.
One considers representation of a polynomial in several variables as the sum of values of univariate polynomials taken at linear combinations of the variables.
We prove that for every ε > 0 and every nonnegative integer w there exist primes such that for the height of the cyclotomic polynomial is at least , where and is a constant depending only on w; furthermore . In our construction we can have for all i = 1,...,w and any function h: ℝ₊ → ℝ₊.
We show that the discriminant of the generalized Laguerre polynomial is a non-zero square for some integer pair , with , if and only if belongs to one of explicitly given infinite sets of pairs or to an additional finite set of pairs. As a consequence, we obtain new information on when the Galois group of over is the alternating group . For example, we establish that for all but finitely many positive integers , the only for which the Galois group of over is is .
If conditional independence constraints define a family of positive distributions that is log-convex then this family turns out to be a Markov model over an undirected graph. This is proved for the distributions on products of finite sets and for the regular Gaussian ones. As a consequence, the assertion known as Brook factorization theorem, Hammersley–Clifford theorem or Gibbs–Markov equivalence is obtained.
In 1909, Hilbert proved that for each fixed k, there is a number g with the following property: Every integer N ≥ 0 has a representation in the form N = x 1k + x 2k + … + x gk, where the x i are nonnegative integers. This resolved a conjecture of Edward Waring from 1770. Hilbert’s proof is somewhat unsatisfying, in that no method is given for finding a value of g corresponding to a given k. In his doctoral thesis, Rieger showed that by a suitable modification of Hilbert’s proof, one can give explicit...
A set of distinct positive integers is said to be gcd-closed if for all . Shaofang Hong conjectured in 2002 that for a given positive integer there is a positive integer depending only on , such that if , then the power LCM matrix defined on any gcd-closed set is nonsingular, but for , there exists a gcd-closed set such that the power LCM matrix on is singular. In 1996, Hong proved and noted for all . This paper develops Hong’s method and provides a new idea to calculate...