Sums of like powers and some dense sets.
Using only elementary arguments, Cassels solved the Diophantine equation (x-1)³ + x³ + (x+1)³ = z² (with x, z ∈ ℤ). The generalization (with x, z, n ∈ ℤ and n ≥ 2) was considered by Zhongfeng Zhang who solved it for k ∈ 2,3,4 using Frey-Hellegouarch curves and their corresponding Galois representations. In this paper, by employing some sophisticated refinements of this approach, we show that the only solutions for k = 5 have x = z = 0, and that there are no solutions for k = 6. The chief innovation...
Soit un entier . Pour et , nous considérons la suite de Lucas . Nous montrons que, pour n’est ni un carré, ni le double, ni le triple d’un carré, ni six fois un carré pour sauf si et .
Nous démontrons une conjecture de V.A. Lebesgue relative à l’équation diophantienne par une méthode élémentaire qui fournit également la solution de quelques autres équations.