Previous Page 5

Displaying 81 – 96 of 96

Showing per page

On the Lebesgue-Nagell equation

Andrzej Dąbrowski (2011)

Colloquium Mathematicae

We completely solve the Diophantine equations x ² + 2 a q b = y (for q = 17, 29, 41). We also determine all C = p a p k a k and C = 2 a p a p k a k , where p , . . . , p k are fixed primes satisfying certain conditions. The corresponding Diophantine equations x² + C = yⁿ may be studied by the method used by Abu Muriefah et al. (2008) and Luca and Togbé (2009).

On x n + y n = n ! z n

Susil Kumar Jena (2018)

Communications in Mathematics

In p. 219 of R.K. Guy’s Unsolved Problems in Number Theory, 3rd edn., Springer, New York, 2004, we are asked to prove that the Diophantine equation x n + y n = n ! z n has no integer solutions with n + and n > 2 . But, contrary to this expectation, we show that for n = 3 , this equation has infinitely many primitive integer solutions, i.e. the solutions satisfying the condition gcd ( x , y , z ) = 1 .

Currently displaying 81 – 96 of 96

Previous Page 5