Corrections to the paper "On values of a polynomial a arithmetic progressions with equal products" (Acta Arith. 72 (1995), 67-76)
For any number field k, upper bounds are established for the number of k-rational points of bounded height on non-singular del Pezzo surfaces defined over k, which are equipped with suitable conic bundle structures over k.
We consider the Diophantine equation , where B, D are integers (B ≠ ±2, D ≠ 0) and p is a prime >5. We give Kraus type criteria of nonsolvability for this equation (explicitly, for many B and D) in terms of Galois representations and modular forms. We apply these criteria to numerous equations (with B = 0, 1, 3, 4, 5, 6, specific D’s, and p ∈ (10,10⁶)). In the last section we discuss reductions of the above Diophantine equations to those of signature (p,p,2).
We establish the non-singular Hasse principle for pairs of diagonal quartic equations in 22 or more variables. Our methods involve the estimation of a certain entangled two-dimensional 21st moment of quartic smooth Weyl sums via a novel cubic moment of Fourier coefficients.