The search session has expired. Please query the service again.
This article provides necessary and sufficient conditions for
both of the Diophantine equations X^2 − DY^2 = m1 and x^2 − Dy^2 = m2
to have primitive solutions when m1 , m2 ∈ Z, and D ∈ N is not a perfect
square. This is given in terms of the ideal theory of the underlying real
quadratic order Z[√D].
Soient trois éléments de l’ensemble des entiers > (resp. ) des polynômes complexes) premiers entre eux ; on note le produit des facteurs premiers (resp. le nombre des facteurs premiers dans ) du produit . La conjecture énonce que, pour tout , il existe pour lequel l’inégalité : avec max) est toujours vérifiée. Le théorème de Mason établit l’inégalité, (supposé > ) désignant le plus grand des degrés des polynômes . Les cas de triplets de polynômes où l’égalité...
The problem of determining power integral bases in algebraic number fields is equivalent to solving the corresponding index form equations. As is known (cf. Győry [25]), every index form equation can be reduced to an equation system consisting of unit equations in two variables over the normal closure of the original field. However, the unit rank of the normal closure is usually too large for practical use. In a recent paper Győry [27] succeeded in reducing index form equations to systems of unit...
In this note, particular inequalities of DVT-type in real and integer numbers are investigated.
Currently displaying 1 –
20 of
32