Real components of algebraic varieties and étale cohomologie.
Dans cet article, on montre de manière explicite que toute forme -bilinéaire symétrique non dégénérée de rang pair, et non -isomorphe au plan hyperbolique, se réalise comme forme trace hermitienne amplifiée d’une algèbre , où est un entier algébrique. Plus précisemment, on montre que pour tout symétrique, avec det (et det (mod ) si ), il existe un entier algébrique , une involution -linéaire de -symétrique et une -base d’un idéal de tels que .
Soit un produit de polynômes cyclotomiques. Existe-t-il une forme bilinéaire symétrique entière, unimodulaire et définie positive ayant une isométrie de polynôme caractéristique ? Ce travail donne une réponse partielle à cette question.