The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this article, we formalize a matrix of ℤ-module and its properties. Specially, we formalize a matrix of a linear transformation of ℤ-module, a bilinear form and a matrix of the bilinear form (Gramian matrix). We formally prove that for a finite-rank free ℤ-module V, determinant of its Gramian matrix is constant regardless of selection of its basis. ℤ-module is necessary for lattice problems, LLL (Lenstra, Lenstra and Lovász) base reduction algorithm and cryptographic systems with lattices [22]...
Using the geometry of the projective plane over the finite field , we construct a Hermitian Lorentzian lattice of dimension defined over a certain number ring that depends on . We show that infinitely many of these lattices are -modular, that is, , where is some prime in such that .The Lorentzian lattices sometimes lead to construction of interesting positive definite lattices. In particular, if is a rational prime such that is norm of some element in , then we find a dimensional...
Currently displaying 1 –
2 of
2